On inference for fractional differential equations

نویسندگان

  • Alexandra Chronopoulou
  • Samy Tindel
چکیده

On inference for fractional differential equations Alexandra Chronopoulou and Samy Tindel Institut Élie Cartan Nancy, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France. e-mail: [email protected] ; [email protected] Abstract: Based on Malliavin calculus tools and approximation results, we show how to compute a maximum likelihood type estimator for a rather general differential equation driven by a fractional Brownian motion with Hurst parameter H > 1/2. Rates of convergence for the approximation task are provided, and numerical experiments show that our procedure leads to good results in terms of estimation. AMS 2000 subject classifications: Primary 60H35; secondary 60H07, 60H10, 65C30, 62M09.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...

متن کامل

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

متن کامل

Basic results on distributed order fractional hybrid differential equations with linear perturbations

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

متن کامل

On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales

n this paper, at first the  concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.

متن کامل

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

Presentation of two models for the numerical analysis of fractional integro-differential equations and their comparison

In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011